ÌâÄ¿ÄÚÈÝ
4£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=t\\ y=m+t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ3¦Ñ2cos2¦È+¦Ñ2sin2¦È=12£¬ÇÒÇúÏßCµÄϽ¹µãFÔÚÖ±ÏßlÉÏ£®£¨1£©ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó|FA|•|FB|µÄÖµ£»
£¨2£©ÇóÇúÏßCµÄÄÚ½Ó¾ØÐεÄÖܳ¤µÄ×î´óÖµ£®
·ÖÎö £¨1£©µãFµÄÖ±½Ç×ø±êΪ£¨0£¬-2$\sqrt{2}$£©£¬Çó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ3x2+y2=12£¬Çó³öFµÄ×ø±ê£¬´Ó¶øÇó³ömµÄÖµ£¬½«Ö±ÏßlµÄ±ê×¼²ÎÊý·½³Ì´úÈëÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌÖУ¬µÃt¡ä2-2t¡ä-2=0£¬ÓÉ´ËÄÜÇó³ö|FA|•|FB|£®
£¨2£©ÉèÍÖÔ²CµÄÄÚ½Ó¾ØÐÎÔÚµÚÒ»ÏóÏ޵Ķ¥µãΪ£¨2cos¦È£¬2$\sqrt{3}$sin¦È£©£¬ÓɶԳÆÐԿɵÃÍÖÔ²CµÄÄÚ½Ó¾ØÐεÄÖܳ¤Îª8cos¦È+8$\sqrt{3}$sin¦È=16sin£¨¦È+$\frac{¦Ð}{6}$£©£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄÄÚ½Ó¾ØÐεÄÖܳ¤µÄ×î´óÖµ£®
½â´ð ½â£º£¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ3¦Ñ2cos2¦È+¦Ñ2sin2¦È=12£¬
¡àÖ±½Ç×ø±ê·½³ÌΪ3x2+y2=12£¬¼´$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{12}$=1£¬
¡àF£¨0£¬-2$\sqrt{2}$£©£¬
ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{0=t}\\{-2\sqrt{2}=m+t}\end{array}\right.$£¬½âµÃm=-2$\sqrt{2}$£¬
¡ß½«Ö±ÏßlµÄ±ê×¼²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t¡ä}\\{y=-2\sqrt{2}+\frac{\sqrt{2}}{2}t¡ä}\end{array}\right.$£¨t¡äΪ²ÎÊý£©´úÈëÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌÖУ¬
µÃt¡ä2-2t¡ä-2=0£¬¡àt¡äA•t¡äB=-2
¡à|FA|•|FB|=2£®
£¨2£©ÉèÍÖÔ²CµÄÄÚ½Ó¾ØÐÎÔÚµÚÒ»ÏóÏ޵Ķ¥µãΪ£¨2cos¦È£¬2$\sqrt{3}$sin¦È£©£¬
ÓɶԳÆÐԿɵÃÍÖÔ²CµÄÄÚ½Ó¾ØÐεÄÖܳ¤Îª8cos¦È+8$\sqrt{3}$sin¦È=16sin£¨¦È+$\frac{¦Ð}{6}$£©£¬
¡àµ±¦È+$\frac{¦Ð}{6}$=$\frac{¦Ð}{2}$£¬¼´¦È=$\frac{¦Ð}{3}$ʱ£¬ÍÖÔ²CµÄÄÚ½Ó¾ØÐεÄÖܳ¤È¡µÃ×î´óÖµ16£®
µãÆÀ ±¾Ì⿼²éÁ½Ï߶γ˻ýµÄÇ󷨣¬¿¼²éÍÖÔ²µÄÄÚ½Ó֪ʶµÄÖܳ¤µÄ×î´óÖµµÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| A£® | £¨-¡Þ£¬2] | B£® | £¨0£¬$\frac{1}{2}$] | C£® | [$\frac{1}{2}£¬2$] | D£® | £¨0£¬2] |
| A£® | 2$\sqrt{2}+\frac{2¦Ð}{3}$ | B£® | 4$+\frac{2¦Ð}{3}$ | C£® | 2$\sqrt{2}+\frac{¦Ð}{3}$ | D£® | 4$+\frac{¦Ð}{3}$ |
| A£® | $\frac{17¦Ð}{4}$ | B£® | 4¦Ð | C£® | $\frac{15¦Ð}{4}$ | D£® | $\frac{7¦Ð}{2}$ |