题目内容
14.若函数f(x)=3sinx-4cosx,则f′($\frac{3π}{2}$)=-4.分析 求函数的导数,利用代入法进行求解即可.
解答 解:函数的导数f′(x)=3cosx+4sinx,
则f′($\frac{3π}{2}$)=3cos$\frac{3π}{2}$+4sin$\frac{3π}{2}$=0-4=-4,
故答案为:-4
点评 本题主要考查函数的导数的计算,根据函数的导数的法则是解决本题的关键.
练习册系列答案
相关题目
4.设an=-3n2+15n-18,则数列{an}中的最大项的值是( )
| A. | $\frac{16}{3}$ | B. | $\frac{13}{3}$ | C. | 4 | D. | 0 |
5.函数f(x)的导函数f′(x),满足关系式f(x)=x2+2xf′(2)-lnx,则f(1)的值为( )
| A. | -2 | B. | -4 | C. | -6 | D. | -8 |
9.下表提供了某厂生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据,
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,
(2)根据(1)中求出的线性回归方程,预测生产20吨该产品的生产能耗是多少吨标准煤?
附:回归直线的斜率和截距的最小二乘估计分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| x | 2 | 4 | 6 | 8 | 10 |
| y | 4 | 5 | 7 | 9 | 10 |
(2)根据(1)中求出的线性回归方程,预测生产20吨该产品的生产能耗是多少吨标准煤?
附:回归直线的斜率和截距的最小二乘估计分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.