题目内容
12.| A. | 2$\sqrt{2}+\frac{2π}{3}$ | B. | 4$+\frac{2π}{3}$ | C. | 2$\sqrt{2}+\frac{π}{3}$ | D. | 4$+\frac{π}{3}$ |
分析 由三视图得到几何体是半个球与正方体的组合体.
解答 解:由三视图得到几何体是半个球与正方体的组合体,其中球的半径为1,正方体的棱长为$\sqrt{2}$,
所以体积为$\frac{1}{2}×\frac{4}{3}×π×{1}^{2}+(\sqrt{2})^{3}$=$\frac{2}{3}π+2\sqrt{2}$;
故选A.
点评 本题考查了由几何体的三视图求几何体的体积;关键是正确还原几何体.
练习册系列答案
相关题目
3.观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,6个点可以连15条弦,请你探究其中规律,如果圆周上有10个点.则可以连45条弦.
20.为了研究某种细菌在特定条件下随时间变化的繁殖情况,得到如表所示实验数据,若t与y线性相关.
(1)求y关于t的回归直线方程;
(2)预测t=8时细菌繁殖的个数.
(参考公式:$b=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$,$\widehat{y}=\widehat{b}x+\widehat{a}$)
| 天数t(天) | 3 | 4 | 5 | 6 | 7 |
| 繁殖个数y(千个) | 5 | 6 | 8 | 9 | 12 |
(2)预测t=8时细菌繁殖的个数.
(参考公式:$b=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$,$\widehat{y}=\widehat{b}x+\widehat{a}$)
7.若实数x,y满足x2<y2,则下列不等式成立的是( )
| A. | x<y | B. | -x<y | C. | $\frac{1}{x}$<$\frac{1}{y}$ | D. | |x|<|y| |
17.
面对全球范围内日益严峻的能源形势与环保压力,环保与低碳成为今后汽车发展的一大趋势,越来越多的消费者对新能源汽车表示出更多的关注,某研究机构从汽车市场上随机抽取N辆纯电动汽车调查其续航里程(单次充电后能行驶的最大里程),被调查汽车的续航里程全部介于100公里和450公里之间,根据调查数据形成了如图所示频率分布表及频率分布直方图.
频率分布表
(1)试确定频率分布表中x,y,N的值,并补全频率分布直方图;
(2)若从续航里程在[200,250)及[350,400)的车辆中随机抽取2辆车,求两辆车续航里程都在[350,400)的概率.
频率分布表
| 分组 | 频数 | 频率 |
| [100,150) | 1 | 0.05 |
| [150,200) | 3 | 0.15 |
| [200,250) | x | 0.1 |
| [250,300) | 6 | 0.3 |
| [300,350) | 4 | 0.2 |
| [350,400) | 3 | y |
| [400,450] | 1 | 0.05 |
| 合计 | N | 1 |
(2)若从续航里程在[200,250)及[350,400)的车辆中随机抽取2辆车,求两辆车续航里程都在[350,400)的概率.