题目内容
1.已知集合A={x|-1<x≤1},集合B={-1,1,3},则A∩B={1}.分析 由集合的交集定义:A∩B={x|x∈A且x∈B},即可得到所求.
解答 解:集合A={x|-1<x≤1},集合B={-1,1,3},
则A∩B={1}.
故答案为:{1}.
点评 本题考查集合的运算,主要是交集的求法,注意运用定义法,考查运算能力,属于基础题.
练习册系列答案
相关题目
11.若P(2,1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程为( )
| A. | 2x+y-3=0 | B. | x+y-1=0 | C. | x+y-3=0 | D. | 2x-y-5=0 |
12.已知圆锥的底面半径为2,且它的侧面展开图是一个半圆,则这个圆锥的表面积为( )
| A. | 8π | B. | 12π | C. | 4π | D. | 10π |
13.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则在齐王的马获胜的条件下,齐王的上等马获胜的概率为( )
| A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | 1 |
10.设全集U={x∈R|x>0},函数f(x)=$\frac{1}{\sqrt{lnx-1}}$的定义域为A,则∁UA为( )
| A. | (0,e] | B. | (0,e) | C. | (e,+∞) | D. | [e,+∞) |
11.
某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第x年与年销量y(单位:万件)之间的关系如表:
(Ⅰ)在图中画出表中数据的散点图;
(Ⅱ)根据(Ⅰ)中的散点图拟合y与x的回归模型,并用相关系数加以说明;
(Ⅲ)建立y关于x的回归方程,预测第5年的销售量约为多少?.
附注:参考数据:$\sqrt{\sum_{i=1}^4{{{({y_i}-\overline y)}^2}}}≈32.6$,$\sqrt{5}≈2.24$,$\sum_{i=1}^4{{x_i}{y_i}=418}$.
参考公式:相关系数$r=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}\sum_{i=1}^n{{{({y_i}-\overline y)}^2}}}}}$,
回归方程$\widehaty=\widehata+\widehatbx$中斜率和截距的最小二乘法估计公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.
| x | 1 | 2 | 3 | 4 |
| y | 12 | 28 | 42 | 56 |
(Ⅱ)根据(Ⅰ)中的散点图拟合y与x的回归模型,并用相关系数加以说明;
(Ⅲ)建立y关于x的回归方程,预测第5年的销售量约为多少?.
附注:参考数据:$\sqrt{\sum_{i=1}^4{{{({y_i}-\overline y)}^2}}}≈32.6$,$\sqrt{5}≈2.24$,$\sum_{i=1}^4{{x_i}{y_i}=418}$.
参考公式:相关系数$r=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}\sum_{i=1}^n{{{({y_i}-\overline y)}^2}}}}}$,
回归方程$\widehaty=\widehata+\widehatbx$中斜率和截距的最小二乘法估计公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.