题目内容
设函数,.若存在,使得与同时成立,则实数的取值范围是________.
a>7
若定义在上的函数同时满足以下条件:① 在上是减函数,在上是增函数; ② 是偶函数;③ 在处的切线与直线垂直. (Ⅰ)求函数的解析式;(Ⅱ)设,若存在,使,求实数的取值范围
已知是正实数,设函数。
(Ⅰ)设,求的单调区间;
(Ⅱ)若存在,使且成立,求的取值范围。
已知函数.
(1)若存在,使f(x0)=1,求x0的值;
(2)设条件p:,条件q:,若p是q的充分条件,求实数m的取值范围.
定义在上的函数同时满足以下条件:
① 在上是减函数,在上是增函数; ② 是偶函数;
③ 在处的切线与直线垂直.
(1)求函数的解析式;
(2)设,若存在,使,求实数的取值范围
(本小题满分12分)
设函数.
(Ⅰ)请在下列直角坐标系中画出函数的图象;
(Ⅱ)根据(Ⅰ)的图象,试分别写出关于的方程有2,3,4个实数解时,相应的实数的取值范围;
(Ⅲ)记函数的定义域为,若存在,使成立,则称点为函数图象上的不动点.试问,函数图象上是否存在不动点,若存在,求出不动点的坐标,若不存在,请说明理由.