题目内容

7.已知函数f(x)=mlnx+$\frac{1}{x}$+2x,x∈[2,e].
(Ⅰ)若m=-1,求函数f(x)的单调区间;
(Ⅱ)若对任意的m∈[0,1],关于x的不等式f(x)≤(n+2)x恒成立,求实数n的取值范围.

分析 (Ⅰ)求出函数的导数,根据导函数的符号,求出函数的单调区间即可;
(Ⅱ)问题转化为mlnx+$\frac{1}{x}$-nx≤0,令g(m)=mlnx+$\frac{1}{x}$-nx,由已知得只需g(1)≤0,得到n≥$\frac{lnx}{x}$+$\frac{1}{{x}^{2}}$,令h(x)=$\frac{lnx}{x}$+$\frac{1}{{x}^{2}}$,(x∈[2,e]),根据函数的单调性求出n的范围即可.

解答 解:(Ⅰ)由题意得:f(x)=-lnx+$\frac{1}{x}$+2x,
f′(x)=$\frac{(2x+1)(x-1)}{{x}^{2}}$>0在[2,e]恒成立,
故函数f(x)在[2,e]上递增,无递减区间;
(Ⅱ)若f(x)≤(n+2)x,则mlnx+$\frac{1}{x}$+2x≤(n+2)x,则mlnx+$\frac{1}{x}$-nx≤0,
令g(m)=mlnx+$\frac{1}{x}$-nx,由已知得只需g(1)≤0即lnx+$\frac{1}{x}$-nx≤0,
若对任意x∈[2,e],lnx+$\frac{1}{x}$-nx≤0恒成立,
即n≥$\frac{lnx}{x}$+$\frac{1}{{x}^{2}}$,
令h(x)=$\frac{lnx}{x}$+$\frac{1}{{x}^{2}}$,(x∈[2,e]),则h′(x)=$\frac{x-xlnx-2}{{x}^{3}}$,
设m(x)=x-xlnx-2,x∈[2,e],
则m′(x)=1-(1+lnx)=-lnx<0,
故m(x)在[2,e]递减,m(x)≤m(2)=-2ln2<0,即h′(x)<0,
∴h(x)在[2,e]递减,∴h(x)max=h(2)=$\frac{ln2}{2}$+$\frac{1}{4}$,
即n≥$\frac{ln2}{2}$+$\frac{1}{4}$,
故实数n的范围是[$\frac{ln2}{2}$+$\frac{1}{4}$,+∞).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网