题目内容
【题目】已知椭圆
的中心在原点,左焦点
、右焦点
都在
轴上,点
是椭圆
上的动点,
的面积的最大值为
,在
轴上方使
成立的点
只有一个.
(1)求椭圆
的方程;
(2)过点
的两直线
,
分别与椭圆
交于点
,
和点
,
,且
,比较
与
的大小.
【答案】(1)
(2)![]()
【解析】
(1)根据已知设椭圆
的方程为
,由已知分析得
,解得
,即得椭圆
的方程为
.(2)先证明直线
的斜率为0或不存在时,
.再证明若
的斜率存在且不为0时,
.
(1)根据已知设椭圆
的方程为
,
.
在
轴上方使
成立的点
只有一个,
∴在
轴上方使
成立的点
是椭圆
的短轴的端点.
当点
是短轴的端点时,由已知得
,
解得
.
∴椭圆
的方程为
.
(2)
.
若直线
的斜率为0或不存在时,
且
或
且
.
由
,
得
.
若
的斜率存在且不为0时,设
:
,
由
得
,
设
,
,则
,
,
于是
.
同理可得
.
∴
.
∴
.
综上
.
【题目】党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一,为坚决打赢脱贫攻坚战,某帮扶单位考察了甲乙两种不同的农产品加工生产方式,现对两种生产方式加工的产品质量进行测试并打分对比,得到如下数据:
生产方式甲 | 分值区间 |
|
|
|
|
|
频数 | 20 | 30 | 100 | 40 | 10 | |
生产方式乙 | 分值区间 |
|
|
|
|
|
频数 | 25 | 35 | 50 | 30 |
其中产品质量按测试指标可划分为:指标在区间
上的为特优品,指标在区间
上的为一等品,指标在区间
上的为二等品.
(1)用事件
表示“按照生产方式甲生产的产品为特优品”,估计
的概率;
(2)填写下面列联表,并根据列联表判断能否有
的把握认为“特优品”与生产方式有关?
特优品 | 非特优品 | |
生产方式甲 | ||
生产方式乙 |
(3)根据打分结果对甲乙两种生产方式进行优劣比较.
附表:
| 0.10 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
参考公式:
,其中
.
【题目】某市为广泛开展垃圾分类的宣传教育和倡导工作,使市民树立垃圾分类的环保意识,学会垃圾分类的知识,特举办了“垃圾分类知识竞赛".据统计,在为期1个月的活动中,共有两万人次参与网络答题.市文明实践中心随机抽取100名参与该活动的市民,以他们单次答题得分作为样本进行分析,由此得到如图所示的频率分布直方图:
![]()
(1)求图中a的值及参与该活动的市民单次挑战得分的平均成绩
(同一组中数据用该组区间中点值作代表);
(2)若垃圾分类答题挑战赛得分落在区间
之外,则可获得一等奖奖励,其中
,s分别为样本平均数和样本标准差,计算可得
,若某人的答题得分为96分,试判断此人是否获得一等奖;
(3)为扩大本次“垃圾分类知识竞赛”活动的影响力,市文明实践中心再次组织市民组队参场有奖知识竞赛,竞赛共分五轮进行,已知“光速队”与“超能队”五轮的成绩如下表:
成绩 | 第一轮 | 第二轮 | 第三轮 | 第四轮 | 第五轮 |
“光速队” | 93 | 98 | 94 | 95 | 90 |
“超能队” | 93 | 96 | 97 | 94 | 90 |
①分别求“光速队”与“超能队”五轮成绩的平均数和方差;
②以上述数据为依据,你认为"光速队”与“超能队”的现场有奖知识竞赛成绩谁更稳定?