题目内容
设 分别是椭圆的左右焦点,过的直线L与E相交于A,B两点且成等差数列,则。
如图,直线l1:y=kx+1-k(k≠0,k≠)与l2相交于点P.直线l1与x轴交于点P1,过点P1作x轴的垂线交于直线l2于点Q1,过点Q1作y轴的垂线交直线l1于点P2,过点P2作x轴的垂线交直线l2于点Q2,…这样一直作下去,可得到一系列点P1,Q1,P2,Q2,…点Pn(n=1,2,…)的横坐标构成数列{xn}.
(Ⅰ)证明xn+1-1=(xn-1),(n∈N*);
(Ⅱ)求数列{xn}的通项公式;
(Ⅲ)比较2|PPn|2与4k2|PP1|2+5的大小.
已知△ABC,内角A、B、C的对边分别是,则A等于( )
A.45° B.30° C.45°或135° D.30°或150°
为保护我国的稀土资源,国家限定某矿区的出口总量不能超过80吨,该矿区计划从2006年开始出口,当年出口a吨,以后每一年出口量均比上一年减少10%.
(Ⅰ)以2006年为第一年,设第n年出口量为an吨,试求an的表达式;
(Ⅱ)因稀土资源不能再生,国家计划10年后终止该矿区的出口,问2006年最多出口多少吨?(保留一位小数) 参考数据:0.910 ≈ 0.35.
抛物线的顶点在原点,对称轴为坐标轴且焦点在双曲线上,则抛物线的标准方程为 。
双曲线x2-y2=1的左焦点为F,点P为左支下半支上任意一点(异于顶点),则直线PF的斜率的变化范围是
A.(-∞,0) B.(1,+∞)C.(-∞,0)∪(1,+∞) D.(-∞,-1)∪(1,+∞)
计算: 。
已知动圆过定点,且与定直线相切;
(1)求动圆圆心的轨迹方程;
(2)设过点且斜率为的直线与曲线相交于、两点,求线段的长。
已知首项为的等比数列{an}是递减数列,其前n项和为Sn,且S1+a1,S2+a2,S3+a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)已知,求数列{bn}的前n项和.