题目内容

8.给出定义,若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则称函数y=g(x)的图象关于点(a,b)成中心对称,已知函数f(x)=$\frac{2x+1-a}{a-x}$(x≠1),定义域为A.
(Ⅰ)判断y=f(x)的图象是否关于点(a,-2)成中心对称;
(Ⅱ)当a=1时,求f(sinx)的值域;
(Ⅲ)对于任意的xi∈A,设计构造过程:x2=f(x1),x3=f(x2),…,xn+1=f(xn),如果xi∈A(i=2,3,4,…)构造过程将继续下去,如果xi∉A,构造过程将停止,若对任意xi∈A,构造过程可以无限进行下去,求a的值.

分析 (1)根据中心对称的定义和性质证明y=f(x)的图象关于点(a,-2)成中心对称;
(2)根据分式函数的性质,利用换元法即求函数的值域;
(3)根据设计过程,进行推理即可.

解答 (1)∵f(x)=$\frac{2x+1-a}{a-x}$,
∴f(a+x)+f(a-x)=$\frac{2(a+x)+1-a}{a-(a+x)}$+$\frac{2(a-x)+1-a}{a-(a-x)}$=-$\frac{2x+1+a}{x}$+$\frac{a-2x+1}{x}$=-2-$\frac{1}{x}$-$\frac{a}{x}$+$\frac{1}{x}$+$\frac{a}{x}$-2=-4=2×(-2),
由已知定理,得y=f(x)的图象关于点(a,-2)成中心对称.(3分)
(2)当a=1时,f(x)=$\frac{2x+1-a}{a-x}$=$\frac{2x}{1-x}$=$\frac{2(x-1)+2}{1-x}$=-2-$\frac{2}{x-1}$,
设t=sinx,则-1≤t<1,
则则函数f(x)在-1≤t<1上为增函数,
则当x=-1时取得最小值,此时y=-2+1=-1,
则y≥-1,即函数的值域为[-1,+∞)(7分)
(3)∵构造过程可以无限进行下去,∴f(x)=$\frac{2x+1-a}{a-x}$≠a对任意x∈A恒成立.
∴方程$\frac{2x+1-a}{a-x}$=a无解,即方程(a+2)x=a2+a-1无解或有唯一解x=a.
∴$\left\{\begin{array}{l}{a+2=0}\\{{a}^{2}+a-1≠0}\end{array}\right.$或$\left\{\begin{array}{l}{a+2≠0}\\{(a+2)a={a}^{2}+a-1}\end{array}\right.$,
由此得到a=-2或a=-1(13分)

点评 本例考查的数学知识点有,函数的对称性,函数的定义域和值域的求法;数学思想有极限思想,方程思想;是一道函数综合题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网