题目内容

5.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y-2≥0}\\{2x+y-4≤0}\\{4x-y+1≥0}\end{array}\right.$,则目标函数z=y-3x的最大值是$\frac{3}{2}$.

分析 作出不等式组对应的平面区域,利用数形结合即可得到结论.

解答 解:由z=y-3x,得y=3x+z,
作出不等式对应的可行域,
平移直线y=3x+z,
由平移可知当直线y=3x+z经过点A时,
直线y=3x+z的截距最大,此时z取得最大值,
由$\left\{\begin{array}{l}{2x+y=4}\\{4x-y=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=3}\end{array}\right.$,
即A($\frac{1}{2}$,3)
代入z=y-3x,得z=3-$\frac{3}{2}$=$\frac{3}{2}$,
即z=y-3x的最大值为$\frac{3}{2}$.
故答案为:$\frac{3}{2}$

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网