题目内容
19.如图,在四棱锥P-ABCD中,底面ABCD是正方形,E为PD中点,若$\overrightarrow{PA}$=$\overrightarrow a$,$\overrightarrow{PB}$=$\overrightarrow b$,$\overrightarrow{PC}$=$\overrightarrow c$,则$\overrightarrow{BE}$=( )| A. | $\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\frac{1}{2}$$\overrightarrow c$ | B. | $\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b-\frac{1}{2}$$\overrightarrow c$ | C. | $\frac{1}{2}\overrightarrow a-\frac{3}{2}\overrightarrow b+\frac{1}{2}$$\overrightarrow c$ | D. | $\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\frac{3}{2}\overrightarrow c$ |
分析 利用空间向量加法法则求解.
解答 解:∵在四棱锥P-ABCD中,底面ABCD是正方形,E为PD中点,
$\overrightarrow{PA}$=$\overrightarrow a$,$\overrightarrow{PB}$=$\overrightarrow b$,$\overrightarrow{PC}$=$\overrightarrow c$,
∴$\overrightarrow{BE}$=$\frac{1}{2}$($\overrightarrow{BP}+\overrightarrow{BD}$)=-$\frac{1}{2}$$\overrightarrow{PB}$+$\frac{1}{2}$($\overrightarrow{BA}+\overrightarrow{BC}$)=-$\frac{1}{2}$$\overrightarrow{PB}$+$\frac{1}{2}$$\overrightarrow{BA}$+$\frac{1}{2}$$\overrightarrow{BC}$
=-$\frac{1}{2}$$\overrightarrow{PB}$+$\frac{1}{2}$($\overrightarrow{PA}$-$\overrightarrow{PB}$)+$\frac{1}{2}$($\overrightarrow{PC}$-$\overrightarrow{PB}$)
=-$\frac{3}{2}$$\overrightarrow{PB}$+$\frac{1}{2}$$\overrightarrow{PA}$+$\frac{1}{2}$$\overrightarrow{PC}$=$\frac{1}{2}\overrightarrow{a}$-$\frac{3}{2}\overrightarrow{b}$+$\frac{1}{2}\overrightarrow{c}$.
故选:C.
点评 本题考查向量的求法,是基础题,解题时要认真审题,注意空间向量加法法则的合理运用.
| A. | f(x)=($\frac{1}{2}$)x-1 | B. | f(x)=log2x-4 | C. | f(x)=3-2x | D. | f(x)=sinx |
| A. | $\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{5}$=1 | B. | $\frac{{x}^{2}}{13}$-$\frac{{y}^{2}}{13}$=1 | C. | $\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{5}$=1 | D. | $\frac{{y}^{2}}{13}$-$\frac{{x}^{2}}{13}$=1 |