题目内容
20.已知函数y=f(x+2)的图象关于直线x=-2对称,且当x∈(0,+∞)时,f(x)=|log2x|,若a=f(-3),b=f($\frac{1}{4}$),c=f(2),则a,b,c的大小关系是( )| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | a>c>b |
分析 利用函数y=f(x+2)的图象关于直线x=-2对称,可得函数y=f(x)的图象关于y轴对称,是偶函数.由此利用对数函数的单调性能求出结果.
解答 解:∵函数y=f(x+2)的图象关于直线x=-2对称,
∴函数y=f(x)的图象关于y轴对称,是偶函数.
∵当x∈(0,+∞)时,f(x)=|log2x|,
∴a=f(-3)=f(3)=|log23|=log23∈(log22,log24)=(1,2),
b=f($\frac{1}{4}$)=|log2$\frac{1}{4}$|=|-2|=2,
c=f(2)=|log22|=1,
∴b>a>c.
故选:B.
点评 熟练掌握轴对称、奇偶函数的性质、利用导数研究函数的单调性、对数的运算性质等是解题的关键.
练习册系列答案
相关题目
10.等比数列{an}的第5项恰好等于前5项之和,那么该数列的公比q=( )
| A. | -1 | B. | 1 | C. | 1或-1 | D. | 2 |
8.已知函数f(x)=$\left\{\begin{array}{l}x-2,\;x≥0\\{2^x},\;x<0\end{array}$,则f(-1)=( )
| A. | -1 | B. | $\frac{1}{2}$ | C. | 2 | D. | -3 |
9.已知复数(1+i)z-2=i,则复数z在复平面上对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
10.椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=α,且α∈[$\frac{π}{12}$,$\frac{π}{4}$],则该椭圆离心率的最大值为( )
| A. | $\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | 1 |