题目内容
设全集集合则( )
A. B. C. D.
(本大题满分12分)定义在上的函数满足:①对任意且,都有成立; ②在上是奇函数,且.
(1)求证:在上是单调递增函数;
(2)解关于不等式;
(3)若对所有的及恒成立,求实数的取值范围.
已知x为实数,用表示不超过x的最大整数,例如对于函数f(x),若存在,使得 ,则称函数函数.
(Ⅰ)判断函数 是否是函数;(只需写出结论)
(Ⅱ)设函数f(x)是定义R在上的周期函数,其最小正周期为T,若f(x)不是函数,求T的最小值.
(Ⅲ)若函数是函数,求a的取值范围.
已知平面向量满足,且,( )
A.若,则,
B.若,则,
C.若,则,
D.若,则,
直线的倾斜角是( )
若函数的最小值为,则实数a的取值范围是( )
某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下:
假设甲、乙两种酸奶独立销售且日销售量相互独立.
(Ⅰ)写出频率分布直方图(甲)中的a的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,,试比较与的大小;(只需写出结论)
(Ⅱ)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率;
(Ⅲ)记X表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求X的数学期望.
用一个平行于棱锥底面的平面截这个棱锥,截得的棱台上、下底面面积比为,截去的棱锥的高是,则棱台的高是( )
(本题满分16分,第1小题满分4分,第2小题满分6分,第3小 题满分6分. )
已知椭圆的左、右焦点分别为,, 点是椭圆的一个顶点,△是等腰直角三角形.
(1)求椭圆的方程;
(2)设点是椭圆上一动点,求线段的中点的轨迹方程;
(3)过点分别作直线,交椭圆于,两点,设两直线的斜率分别为, ,
且,探究:直线是否过定点,并说明理由.