题目内容
|
______.
∵a1+a2+…+an=
,b1+b2+…+bn=
,
且两数列{an}和{bn}都为等差数列,
∴
=
=
=
=
,
又
=
,
∴
=
,
设
=t,则有n=2t-1,
∴
=
=
=
,
则
=
.
故答案为:
| n(a1+an) |
| 2 |
| n(b1+bn) |
| 2 |
且两数列{an}和{bn}都为等差数列,
∴
| a1+a2+…+an |
| b1+b2+…+bn |
| ||
|
| a1+an |
| b1+bn |
2a
| ||
2b
|
a
| ||
b
|
又
| a1+a2+…+an |
| b1+b2+…+bn |
| 3n+1 |
| 4n+3 |
∴
a
| ||
b
|
| 3n+1 |
| 4n+3 |
设
| n+1 |
| 2 |
∴
a
| ||
b
|
| at |
| bt |
| 3(2t-1)+1 |
| 4(2t-1)+3 |
| 6t-2 |
| 8t-1 |
则
| an |
| bn |
| 6n-2 |
| 8n-1 |
故答案为:
| 6n-2 |
| 8n-1 |
练习册系列答案
相关题目