题目内容
|
| 6n-2 |
| 8n-1 |
| 6n-2 |
| 8n-1 |
分析:利用等差数列的前n项和公式化简已知等式左边的分子与分母,约分后再利用等差数列的性质化简,然后设
=t,则有n=2t-1,代入后可表示出
的比值,即为
的比值.
| n+1 |
| 2 |
| at |
| bt |
| an |
| bn |
解答:解:∵a1+a2+…+an=
,b1+b2+…+bn=
,
且两数列{an}和{bn}都为等差数列,
∴
=
=
=
=
,
又
=
,
∴
=
,
设
=t,则有n=2t-1,
∴
=
=
=
,
则
=
.
故答案为:
| n(a1+an) |
| 2 |
| n(b1+bn) |
| 2 |
且两数列{an}和{bn}都为等差数列,
∴
| a1+a2+…+an |
| b1+b2+…+bn |
| ||
|
| a1+an |
| b1+bn |
2a
| ||
2b
|
a
| ||
b
|
又
| a1+a2+…+an |
| b1+b2+…+bn |
| 3n+1 |
| 4n+3 |
∴
a
| ||
b
|
| 3n+1 |
| 4n+3 |
设
| n+1 |
| 2 |
∴
a
| ||
b
|
| at |
| bt |
| 3(2t-1)+1 |
| 4(2t-1)+3 |
| 6t-2 |
| 8t-1 |
则
| an |
| bn |
| 6n-2 |
| 8n-1 |
故答案为:
| 6n-2 |
| 8n-1 |
点评:此题考查了等差数列的性质,以及等差数列的前n项和公式,熟练掌握性质及公式是解本题的关键.
练习册系列答案
相关题目