题目内容

10.解不等式:
(1)|1-$\frac{2x-1}{3}$|≤2
(2)(2-x)(x+3)<2-x.

分析 (1)去掉绝对值,解不等式即可;
(2)把不等式化为(2-x)[(x+3)-1]<0,求出解集即可.

解答 解:(1)不等式|1-$\frac{2x-1}{3}$|≤2可化为
|$\frac{2x-4}{3}$|≤2,
即-2≤$\frac{2x-4}{3}$≤2,
∴-6≤2x-4≤6,
∴-2≤2x≤10,
解得-1≤x≤5,
∴原不等式的解集为{x|-1≤x≤5};
(2)不等式(2-x)(x+3)<2-x可化为
(2-x)[(x+3)-1]<0,
即(x-2)(x+2)>0,
解得x<-2或x>2,
∴原不等式的解集为{x|x>2或x<-2}.

点评 本题考查了含有绝对值的不等式和一元二次不等式的解法与应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网