题目内容
设lg2x-lgx2-2=0的两根是α、β,则logαβ+logβα的值是( )
| A.-4 | B.-2 | C.1 | D.3 |
∵lg2x-lgx2-2=0的两根是α、β,
∴lgα+lgβ=2,lgα•lgβ=-2,
logαβ+logβα=
+
=
=
=
=-4.
故选A.
∴lgα+lgβ=2,lgα•lgβ=-2,
logαβ+logβα=
| lgβ |
| lgα |
| lgα |
| lgβ |
=
| (lgα)2+(lgβ)2 |
| lgα•lgβ |
=
| (lgα+lgβ)2-2lgαlgβ |
| -2 |
=
| 4+4 |
| -2 |
=-4.
故选A.
练习册系列答案
相关题目