题目内容

20.函数f(x)的导函数为f'(x),且满足f(x)=3x2+2x•f'(2),则f'(5)+f'(2)=(  )
A.-12B.6C.-6D.32

分析 将f′(2)看出常数利用导数的运算法则求出f′(x),令x=2求出f′(2)代入f′(x),进而可得答案.

解答 解:∵f(x)=3x2+2xf'(2),
∴f′(x)=6x+2f′(2)
令x=2得f′(2)=6×2+2f′(2)
∴f′(2)=-12
∴f′(x)=6x-24,
∴f'(2)=-12,f′(5)=30-24=6,
∴f'(5)+f'(2)=-6,
故选:C

点评 本题主要考查了导数的运算法则,解题的关键是弄清f′(2)是常数,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网