题目内容

8.求极限$\underset{lim}{n→∞}$$\sqrt{n}$($\sqrt{n+1}$-$\sqrt{n-1}$).

分析 化简所求数列的极限的表达式,通过分子有理化,求出极限即可.

解答 解:$\underset{lim}{n→∞}$$\sqrt{n}$($\sqrt{n+1}$-$\sqrt{n-1}$)=$\lim_{n→∞}$$\frac{\sqrt{n}(\sqrt{n+1}-\sqrt{n-1})(\sqrt{n+1}+\sqrt{n-1})}{\sqrt{n+1}+\sqrt{n-1}}$
=$\lim_{n→∞}$$\frac{2\sqrt{n}}{\sqrt{n+1}+\sqrt{n-1}}$
=$\lim_{n→∞}$$\frac{2}{\sqrt{\frac{1}{n}+1}+\sqrt{1-\frac{1}{n}}}$
=1.

点评 本题考查数列的极限的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网