ÌâÄ¿ÄÚÈÝ
19£®ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦Õ}\\{y=2+2sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔµãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ö±ÏßlµÄ·½³ÌΪ¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=2$\sqrt{2}$£®£¨¢ñ£©ÇóÇúÏßCÔÚ¼«×ø±êϵÖеķ½³Ì£»
£¨¢ò£©ÇóÖ±Ïßl±»ÇúÏßC½ØµÃµÄÏÒ³¤£®
·ÖÎö £¨¢ñ£©Çó³öÇúÏßCµÄÆÕͨ·½³Ì£¬¼´¿ÉÇóÇúÏßCÔÚ¼«×ø±êϵÖеķ½³Ì£»
£¨¢ò£©Çó³öÔ²Ðĵ½Ö±ÏߵľàÀ룬ÀûÓù´¹É¶¨ÀíÇóÖ±Ïßl±»ÇúÏßC½ØµÃµÄÏÒ³¤£®
½â´ð ½â£º£¨¢ñ£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦Õ}\\{y=2+2sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÆÕͨ·½³ÌΪx2+£¨y-2£©2=4£¬¼´x2+y2-4y=0£¬
¡àÇúÏßCÔÚ¼«×ø±êϵÖеķ½³ÌΪ¦Ñ=4sin¦È£»
£¨¢ò£©Ö±ÏßlµÄ·½³ÌΪ¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=2$\sqrt{2}$£¬¼´x+y-4=0£¬
Ô²Ðĵ½Ö±ÏߵľàÀëd=$\frac{|0+2-4|}{\sqrt{2}}$=$\sqrt{2}$£¬
¡àÖ±Ïßl±»ÇúÏßC½ØµÃµÄÏÒ³¤=2$\sqrt{4-2}$=2$\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄ»¥»¯£¬¿¼²éµãµ½Ö±Ïß¾àÀ빫ʽµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
10£®º¯Êýy=£¨5x-3£©3µÄµ¼ÊýÊÇ£¨¡¡¡¡£©
| A£® | y'=3£¨5x-3£©2 | B£® | y'=15£¨5x-3£©2 | C£® | y'=9£¨5x-3£©2 | D£® | y'=12£¨5x-3£©2 |
14£®¸´Êý$\frac{3-i}{1-i}$ÔÚ¸´Æ½ÃæÉÏËù¶ÔÓ¦µÄµãÔÚµÚ£¨¡¡¡¡£©ÏóÏÞ£®
| A£® | Ò» | B£® | ¶þ | C£® | Èý | D£® | ËÄ |
3£®
Èçͼ£¬ÔÚ¿Õ¼äÖ±½Ç×ø±êϵD-xyzÖУ¬ËÄÀâÖùABCD-A1B1C1D1Ϊ³¤·½Ì壬AA1=AB=2AD£¬µãEΪC1D1µÄÖе㣬Ôò¶þÃæ½ÇB1-A1B-EµÄÓàÏÒֵΪ£¨¡¡¡¡£©
| A£® | $-\frac{{\sqrt{3}}}{3}$ | B£® | $-\frac{{\sqrt{3}}}{2}$ | C£® | $\frac{{\sqrt{3}}}{3}$ | D£® | $\frac{{\sqrt{3}}}{2}$ |
10£®ÉèÈýÌõ²»Í¬µÄÖ±Ïßl1£¬l2£¬l3Âú×ãl1¡Íl3£¬l2¡Íl3£¬Ôòl1Óël2£¨¡¡¡¡£©
| A£® | ÊÇÒìÃæÖ±Ïß | B£® | ÊÇÏֱཻÏß | ||
| C£® | ÊÇÆ½ÐÐÖ±Ïß | D£® | ¿ÉÄÜÏཻ£¬»òÏཻ£¬»òÒìÃæÖ±Ïß |
7£®ÒªµÃµ½º¯Êý$y=\frac{{\sqrt{2}}}{2}sinx+\frac{{\sqrt{2}}}{2}cosx+1$µÄͼÏó£¬ÐèÒª°Ñº¯Êýy=sinxµÄͼÏ󣨡¡¡¡£©
| A£® | ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{4}$¸öµ¥Î»£¬ÔÙÏòÉÏÆ½ÒÆ1¸öµ¥Î» | |
| B£® | Ïò×óÆ½ÒÆ$\frac{¦Ð}{4}$¸öµ¥Î»£¬ÔÙÏòÉÏÆ½ÒÆ1¸öµ¥Î» | |
| C£® | Ïò×óÆ½ÒÆ$\frac{¦Ð}{4}$¸öµ¥Î»£¬ÔÙÏòÏÂÆ½ÒÆ1¸öµ¥Î» | |
| D£® | ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{4}$¸öµ¥Î»£¬ÔÙÏòÏÂÆ½ÒÆ1¸öµ¥Î» |
8£®Âú×ã{1£¬2}?A⊆{1£¬2£¬3£¬4£¬5£¬6}µÄ¼¯ºÏAµÄ¸öÊýÓУ¨¡¡¡¡£©¸ö£®
| A£® | 13 | B£® | 14 | C£® | 15 | D£® | 16 |