题目内容
若抛物线的顶点在坐标原点,对称轴为x轴,焦点在直线2x-4y+11=0上,则它的方程为( )
| A.y2=-11x | B.y2=11x | C.y2=22x | D.y2=-22x |
∵焦点在直线2x-4y+11=0上,且抛物线的顶点在原点,对称轴是x轴,
令y=0得x=-
,
焦点A的坐标为A(-
,0),
因抛物线以x轴对称式,设方程为y2=-2px,
则
=
求得p=11,
∴则此抛物线方程为y2=-22x;
故选D.
令y=0得x=-
| 11 |
| 2 |
焦点A的坐标为A(-
| 11 |
| 2 |
因抛物线以x轴对称式,设方程为y2=-2px,
则
| p |
| 2 |
| 11 |
| 2 |
求得p=11,
∴则此抛物线方程为y2=-22x;
故选D.
练习册系列答案
相关题目