题目内容
10.椭圆4x2+y2=1的离心率为( )| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
分析 椭圆4x2+y2=1可化为椭圆$\frac{{x}^{2}}{\frac{1}{4}}$+y2=1,求出a,b,c,即可求出椭圆的离心率.
解答 解:椭圆4x2+y2=1可化为椭圆$\frac{{x}^{2}}{\frac{1}{4}}$+y2=1,
∴a=1,b=$\frac{1}{2}$,c=$\frac{\sqrt{3}}{2}$,
∴e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$.
故选C.
点评 本题考查椭圆的方程与性质,确定几何量是关键.
练习册系列答案
相关题目
5.下列命题正确的是( )
| A. | 若非零向量$\overrightarrow{a}$与$\overrightarrow{b}$的方向相同或相反,则$\overrightarrow{a}$+$\overrightarrow{b}$的方向必与$\overrightarrow{a}$,$\overrightarrow{b}$之一方向相同 | |
| B. | 在△ABC中,必有$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CA}$=$\overrightarrow{0}$ | |
| C. | 若$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CA}$=$\overrightarrow{0}$,则A,B,C为一个三角形的三个顶点 | |
| D. | 若$\overrightarrow{a}$与$\overrightarrow{b}$为非零向量,则|$\overrightarrow{a}$+$\overrightarrow{b}$|与|$\overrightarrow{a}$|+|$\overrightarrow{b}$|一定相等 |
2.函数$y={log_{\frac{1}{2}}}({{x^2}+2x-3})$的单调递增区间是( )
| A. | (-∞,-3) | B. | (-∞,-1) | C. | (-1,+∞) | D. | (1,+∞) |
2.若三点A(2,2),B(a,0),C(0,b)共线(a>0,b>0),则a+2b的最小值为( )
| A. | 12 | B. | 8$\sqrt{2}$ | C. | 6-4$\sqrt{2}$ | D. | 6+4$\sqrt{2}$ |