题目内容
12.设复数z满足$\frac{1-i}{i}$•z=1,则|z|=( )| A. | 1 | B. | 5 | C. | $\sqrt{2}$ | D. | 2 |
分析 利用复数的运算法则、模的计算公式即可得出.
解答 解:由题意,得$z=\frac{1-i}{i}=-1-i$,
则$|z|=\sqrt{2}$;
故选:C.
点评 本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
3.下表是某厂改造后产量x吨产品与相应生产能耗y(吨)的几组对照数据:
(1)求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)已知技术改造前生产100吨该产品能耗90吨,试根据所求出的回归方程,预测生产100吨该产品的生产能耗比改造前降低多少吨?
附:$\widehat{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | 4.5 |
(2)已知技术改造前生产100吨该产品能耗90吨,试根据所求出的回归方程,预测生产100吨该产品的生产能耗比改造前降低多少吨?
附:$\widehat{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
20.下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为y=0.7x+0.35,则表中m的值为( )
| x | 3.5 | 4.5 | 5.5 | 6.5 |
| y | 3 | 4m | 4 | 5 |
| A. | 1 | B. | 0.85 | C. | 0.95 | D. | 0.9 |
7.已知U={x∈N|x<6},P={2,4},Q={1,3,4,6},则(∁UP)∩Q=( )
| A. | {3,4} | B. | {3,6} | C. | {1,3} | D. | {1,4} |