题目内容

根据以下各组条件解三角形:
①A=60°,B=75°,c=1;
②a=5,b=10,A=15°;
③a=5,b=10,A=30°.
其中解不唯一的序号
 
.(若有请填序号,若没有请填无).
考点:正弦定理
专题:三角函数的求值
分析:各组利用正弦定理计算,再利用三角形的边角关系判断即可得到结果.
解答: 解:①由A=60°,B=75°,得到C=45°,
∵c=1,
∴由正弦定理
a
sinA
=
b
sinB
=
c
sinC
=
1
2
2
=
2
得:a=
2
sin60°,b=
2
sin75°,
则此三角形有唯一解,不合题意;
②∵a=5,b=10,A=15°,
∴由正弦定理
a
sinA
=
b
sinB
得:sinB=
bsinA
a
=
10sin15°
5
=2sin15°=
6
-
2
2

∵a<b,∴A<B,
则B有两解,符合题意;
③∵a=5,b=10,A=30°,
∴由正弦定理
a
sinA
=
b
sinB
得:sinB=
bsinA
a
=
10×
1
2
5
=1,
∴B=90°,C=60°,
利用勾股定理得:c=
102-52
=5
3

则此三角形有唯一解,不合题意,
则其中解不唯一的序号为②.
故答案为:②.
点评:此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网