题目内容

13.如图所示,直径分别为AB、OC的两圆相交于B、D两点,O为AB的中点.
(1)求证:AD∥OC;
(2)若OA=2,求AD•OC的值.

分析 (1)要证明AD∥OC,我们要根据直线平行的判定定理,观察已知条件及图形,我们可以连接BD、OD,只要证明BD⊥OC,BD⊥AD
即可得证.
(2)因为⊙O的半径为2,而其它线段长均为给出,故要想求AD•OC的值,我们要将其转化用半径相等或相关的线段积的形式,结合(1)的结论,我们易证明Rt△BAD∽Rt△ODC,根据相似三角形性质,不难得到转化的思路.

解答 (1)证明:如图,连接BD、OD.
∵直径分别为AB、OC的两圆相交于B、D两点
∴BD⊥OC,BD⊥AD
∴AD∥OC;
(2)解:AO=OD,则∠ODA=∠A=∠DOC,
∴Rt△BAD∽Rt△ODC,
∵圆O的半径为2,
∴AD•OC=AB•OD=8.

点评 根据求证的结论,使用分析推敲证明过程中所需要的条件,进而分析添加辅助线的方法,是平面几何证明必须掌握的技能,大家一定要熟练掌握,而在(2)中根据已知条件分析转化的方向也是解题的主要思想.解决就是寻找解题的思路,由已知出发,找寻转化方向和从结论出发寻找转化方向要结合在一起使用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网