题目内容
已知,若存在,使对一切实数x恒成立,则= .
;
如图,四棱锥中,底面为矩形,,为上一点.
(1)求证:平面平面;
(2)若∥平面,求证:为的中点.
某单位有三部门,其人数比例为3∶4∶5,现欲用分层抽样方法抽调n名志愿者支援西部大开发 .若在部门恰好选出了6名志愿者,那么n=________.
已知矩阵,其中均为实数,若点在矩阵的变换作用下得到点,求矩阵的特征值.
已知4瓶饮料中有且仅有2瓶是果汁饮料,从这4瓶饮料中随机取2瓶,则所取两瓶中至少有一瓶是果汁饮料的概率是 .
三次函数的两个极值点为且重合,又在曲线上,则曲线的切线斜率的最大值的最小值为_________.
已知a,b是不相等的正数,在a,b之间分别插入m个正数a1,a2,…,am和正数b1,b2,…,bm,使a,a1,a2,…,am,b是等差数列,a,b1,b2,…,bm,b是等比数列.
(1)若m=5,=,求的值;
(2)若b=λa(λ∈N*,λ≥2),如果存在n (n∈N*,6≤n≤m)使得an-5=bn,求λ的最小值及此时m的值;
(3)求证:an>bn(n∈N*,n≤m).
已知点A(1,-1),B(4,0),C(2,2).平面区域D由所有满足=λ+μ (1<λ≤a,1<μ≤b)的点P(x,y)组成的区域.若区域D的面积为8,则a+b的最小值为 .
已知.
⑴求及;
⑵试比较与的大小,并说明理由.