题目内容
求证:cosx•cos2x•cos4x=
.
| sin8x |
| 8sinx |
证明:由倍角公式sin2x=2sinxcosx,
故sin8x=2sin4xcos4x=4sin2xcos2xcos4x=8sinxcosxcos2xcos4x,
所以
.=
=cosx•cos2x•cos4x,
故cosx•cos2x•cos4x=
.得证.
故sin8x=2sin4xcos4x=4sin2xcos2xcos4x=8sinxcosxcos2xcos4x,
所以
| sin8x |
| 8sinx |
| 8sinxcosxcos2xcos4x |
| 8sinx |
故cosx•cos2x•cos4x=
| sin8x |
| 8sinx |
练习册系列答案
相关题目