题目内容
已知函数f(x)=(1+cos2x)sin2x,x∈R.若f(α)=
,则f(α+
)=______.
| 1 |
| 4 |
| π |
| 8 |
f(x)=(1+cos2x)sin2x=(1+cos2x)•
=
=
-
cos4x,
因为f(α)=
,即
-
cos4α=
,解得α=
+
,k∈Z,
所以f(α+
)=
-
cos4(α+
)=
-
cos4(
+
)=
-
cos(kπ+π),
当k为偶数时,f(α+
)=
,当k为奇数时,f(α+
)=0,
所以f(α+
)=
或0,
故答案为:
或0.
| 1-cos2x |
| 2 |
| 1-cos22x |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
因为f(α)=
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| kπ |
| 4 |
| π |
| 8 |
所以f(α+
| π |
| 8 |
| 1 |
| 4 |
| 1 |
| 4 |
| π |
| 8 |
| 1 |
| 4 |
| 1 |
| 4 |
| kπ |
| 4 |
| π |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
当k为偶数时,f(α+
| π |
| 8 |
| 1 |
| 2 |
| π |
| 8 |
所以f(α+
| π |
| 8 |
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|