题目内容
10.设命题p:函数y=sin2x的最小正周期为$\frac{π}{2}$,命题q:函数y=cosx的图象关于点(π,0)中心对称,则下列判断正确的是( )| A. | p为真 | B. | q为真 | C. | p∧q为假 | D. | p∨q为真 |
分析 由题设条件可先判断出两个命题的真假,再根据复合命题真假的判断规则判断出选项中复合命题的真假即可得出正确选项.
解答 解:由于函数y=sin2x的最小正周期为π,故命题p是假命题;
函数y=cosx的图象关于直线x=kπ对称,k∈Z,故q是假命题;
结合复合命题的判断规则知:p∧q为假命题,p∨q为是假命题;
故选:C.
点评 本题考查复合命题的真假判断,解题的关键是正确判断所涉及命题的真假及熟练掌握复合命题的真假判断规则,本题属于高考常考题型也是对命题考查的常规题型,知识性强,难度不大.
练习册系列答案
相关题目
1.
如图所示,直线x-y+2=0与抛物线y=x2相交于A,D两点,分别过A,D作平行于y轴的直线交x轴于B,C两点,随机向梯形ABCD内投一点P,则点P落在抛物线弓形AOD内(图中阴影部分)的概率是( )
| A. | $\frac{1}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
15.已知命题p:2和8的等比中项是4;命题q:平面内到两个定点F1,F2的距离之差等于常数2a(|F1F2|<2a)的点的轨迹是双曲线,则下列命题为真命题的是( )
| A. | p∧q | B. | ¬p∧q | C. | p∧¬q | D. | ¬p∧¬q |