题目内容
在区间[0,3]上随机取一个数x,则x∈[2,3]的概率为
.
| 1 |
| 3 |
| 1 |
| 3 |
分析:根据几何概型计算公式,用区间[2,3]的长度除以区间[0,3]的长度,即可得到本题的概率.
解答:解:∵区间[0,3]的长度为3-0=3,区间[2,3]的长度为3-2=1,
∴区间[0,3]上随机取一个数x,则x∈[2,3]的概率为P=
故答案为:
∴区间[0,3]上随机取一个数x,则x∈[2,3]的概率为P=
| 1 |
| 3 |
故答案为:
| 1 |
| 3 |
点评:本题用在区间上取值,求满足条件事件的概率为例,考查了几何概型及其计算方法的知识,属于基础题.
练习册系列答案
相关题目
探究函数
,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
请观察表中y值随x值变化的特点,完成下列问题:
(1)若函数
,(x>0)在区间(0,2)上递减,则在 上递增;
(2)当x= 时,
,(x>0)的最小值为 ;
(3)试用定义证明
,(x>0)在区间(0,2)上递减;
(4)函数
,(x<0)有最值吗?是最大值还是最小值?此时x为何值?
(5)解不等式
.
解题说明:(1)(2)两题的结果直接填写在横线上;(4)题直接回答,不需证明。
(本小题满分16分)
探究函数
,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
请观察表中y值随x值变化的特点,完成下列问题:
(1)若函数
,(x>0)在区间(0,2)上递减,则在 上递增;
(2)当x= 时,
,(x>0)的最小值为 ;
(3)试用定义证明
,(x>0)在区间(0,2)上递减;
(4)函数
,(a>0, 且a≠1)有最值吗?是最大值还是最小值?此时x为何值?(只写结果,不要求写过程).