题目内容
已知α∈(0,
),tan(α+
)=3.
(1)求cosα的值;
(2)求sin(2α+
)的值.
| π |
| 2 |
| π |
| 4 |
(1)求cosα的值;
(2)求sin(2α+
| π |
| 3 |
分析:(1)利用tan(α+
)=3,可求得tanα的值,从而可求得cosα的值;
(2)由(1)中cosα的值可求得sin2α与cos2α的值,利用两角和的正弦即可求得sin(2α+
)的值.
| π |
| 4 |
(2)由(1)中cosα的值可求得sin2α与cos2α的值,利用两角和的正弦即可求得sin(2α+
| π |
| 3 |
解答:解:(1)∵tan(α+
)=3,
∴
=
=3,
∴tanα=
.
又α∈(0,
),
∴cosα=
=
;
(2)由(1)知,sinα=
,
∴sin2α=2sinαcosα=2×
×
=
,
cos2α=2cos2α-1=
-1=
,
∴sin(2α+
)
=sin2αcos
+cos2αsin
=
×
+
×
=
.
| π |
| 4 |
∴
tanα+tan
| ||
1-tanαtan
|
| tanα+1 |
| 1-tanα |
∴tanα=
| 1 |
| 2 |
又α∈(0,
| π |
| 2 |
∴cosα=
| 2 | ||
|
2
| ||
| 5 |
(2)由(1)知,sinα=
| ||
| 5 |
∴sin2α=2sinαcosα=2×
2
| ||
| 5 |
| ||
| 5 |
| 4 |
| 5 |
cos2α=2cos2α-1=
| 8 |
| 5 |
| 3 |
| 5 |
∴sin(2α+
| π |
| 3 |
=sin2αcos
| π |
| 3 |
| π |
| 3 |
=
| 4 |
| 5 |
| 1 |
| 2 |
| 3 |
| 5 |
| ||
| 2 |
=
4+3
| ||
| 10 |
点评:本题考查同角三角函数间的基本关系,考查两角和与差的正弦与余弦与正切,属于中档题.
练习册系列答案
相关题目