题目内容

5.将函数y=cos4x+sin2x-$\frac{7}{8}$(x∈R)图象向右平移m(m>0)个单位长度后,所得到的图象关于原点对称,则m的最小值为(  )
A.$\frac{π}{8}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,求得m的最小值.

解答 解:将函数y=cos4x+sin2x-$\frac{7}{8}$=${(\frac{1+cos2x}{2})}^{2}$+$\frac{1-cos2x}{2}$-$\frac{7}{8}$=$\frac{{cos}^{2}2x}{4}$-$\frac{1}{8}$=$\frac{1+cos4x}{8}$-$\frac{1}{8}$=$\frac{1}{8}$cos4x
的图象向右平移m(m>0)个单位长度后,可得函数y=$\frac{1}{8}$cos4(x-m)=$\frac{1}{8}$cos(4x-4m)的图象,
根据所得到的图象关于原点对称,可得4m=kπ+$\frac{π}{2}$,即 m=$\frac{kπ}{4}$+$\frac{π}{8}$,k∈Z,
则m的最小值为$\frac{π}{8}$,
故选:A.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网