题目内容
(2011•邢台一模)已知a1=1,a2=2,an+1=an-1+(-1)n-1+n,(n∈N+)
(I)求a3,a5的值;
(II)求a2n;
(III)求证:
+
+
+…+
<
.
(I)求a3,a5的值;
(II)求a2n;
(III)求证:
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a2n |
| 13 |
| 4 |
分析:(I)利用数列递推式,代入计算,即可求a3,a5的值;
(II)根据数列递推式,利用叠加法,即可求a2n;
(III)分奇偶数,利用裂项法分别求和,即可证得结论.
(II)根据数列递推式,利用叠加法,即可求a2n;
(III)分奇偶数,利用裂项法分别求和,即可证得结论.
解答:(I)解:∵a1=1,an+1=an-1+(-1)n-1+n,(n∈N+)
∴a3=a1-1+2=2,a5=a3-1+4=5;
(II)解:由a4=a2+4,a6=a4+6,…,a2n=a2n-2+2n
以上各式叠加可得a2n=a2+
(n≥2)
∵a2=2,∴a2n=n2+n;
(III)证明:∵
=
=
-
∴
+
+…+
=1-
+
-
+…+
-
=1-
<1…(1)
同理可得a2n-1=n2-2n+2
当n≥3时,a2n-1=n2-2n+2>n2-2n,∴
<
(
-
)
∴
<
(1-
),
<
(
-
),…,
<
(
-
)
∴
+
+…+
=
(1-
+
-
+…+
-
)<
(1+
-
-
)<
…(2)
由(1)(2)可知
+
+
+…+
<1+
+1+
=
∴a3=a1-1+2=2,a5=a3-1+4=5;
(II)解:由a4=a2+4,a6=a4+6,…,a2n=a2n-2+2n
以上各式叠加可得a2n=a2+
| (n-1)(4+2n) |
| 2 |
∵a2=2,∴a2n=n2+n;
(III)证明:∵
| 1 |
| a2n |
| 1 |
| n2+n |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 |
| a2 |
| 1 |
| a4 |
| 1 |
| a2n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
同理可得a2n-1=n2-2n+2
当n≥3时,a2n-1=n2-2n+2>n2-2n,∴
| 1 |
| a2n-1 |
| 1 |
| 2 |
| 1 |
| n-2 |
| 1 |
| n |
∴
| 1 |
| a5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| a7 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| a2n-1 |
| 1 |
| 2 |
| 1 |
| n-2 |
| 1 |
| n |
∴
| 1 |
| a5 |
| 1 |
| a7 |
| 1 |
| a2n-1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n-2 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n-1 |
| 1 |
| n |
| 3 |
| 4 |
由(1)(2)可知
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a2n |
| 1 |
| 2 |
| 3 |
| 4 |
| 13 |
| 4 |
点评:本题考查数列递推式,考查数列的通项,考查不等式的证明,确定数列的通项是关键.
练习册系列答案
相关题目