题目内容

(2011•邢台一模)已知a1=1,a2=2,an+1=an-1+(-1)n-1+n,(n∈N+)
(I)求a3,a5的值;
(II)求a2n
(III)求证:
1
a1
+
1
a2
+
1
a3
+…+
1
a2n
13
4
分析:(I)利用数列递推式,代入计算,即可求a3,a5的值;
(II)根据数列递推式,利用叠加法,即可求a2n
(III)分奇偶数,利用裂项法分别求和,即可证得结论.
解答:(I)解:∵a1=1,an+1=an-1+(-1)n-1+n,(n∈N+)
∴a3=a1-1+2=2,a5=a3-1+4=5;
(II)解:由a4=a2+4,a6=a4+6,…,a2n=a2n-2+2n
以上各式叠加可得a2n=a2+
(n-1)(4+2n)
2
(n≥2)
∵a2=2,∴a2n=n2+n;
(III)证明:∵
1
a2n
=
1
n2+n
=
1
n
-
1
n+1

1
a2
+
1
a4
+…+
1
a2n
=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
<1…(1)
同理可得a2n-1=n2-2n+2
当n≥3时,a2n-1=n2-2n+2>n2-2n,∴
1
a2n-1
1
2
(
1
n-2
-
1
n
)

1
a5
1
2
(1-
1
3
)
1
a7
1
2
(
1
2
-
1
4
)
,…,
1
a2n-1
1
2
(
1
n-2
-
1
n
)

1
a5
+
1
a7
+…+
1
a2n-1
=
1
2
(1-
1
3
+
1
2
-
1
4
+…+
1
n-2
-
1
n
)<
1
2
(1+
1
2
-
1
n-1
-
1
n
)
3
4
…(2)
由(1)(2)可知
1
a1
+
1
a2
+
1
a3
+…+
1
a2n
<1+
1
2
+1+
3
4
=
13
4
点评:本题考查数列递推式,考查数列的通项,考查不等式的证明,确定数列的通项是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网