题目内容
(2011•邢台一模)设an是(3-
)n的展开式中x项的系数(n=2、3、4、…),则
(
+
+…+
)=
| x |
| lim |
| n→∞ |
| 32 |
| a2 |
| 33 |
| a3 |
| 3n |
| an |
18
18
.分析:利用二项展开式的通项公式求出展开式的通项,令x的指数为1,求出an,再由
=
=9×
=
=18×(
-
),能求出
(
+
+
+…+
).
| 3n |
| an |
| 3n | ||
|
| 2 |
| n(n-1) |
| 18 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
| lim |
| n→∞ |
| 32 |
| a2 |
| 33 |
| a3 |
| 34 |
| a4 |
| 3n |
| an |
解答:解:展开式的通项为 Tr+1=(-1)r3n-r
x
令
=1得r=2
∴an=3n-2Cn2.
=
=9×
=
=18×(
-
),
∴
(
+
+
+…+
)
=
{18×[(1-
) +(
-
)+(
-
)+…+(
-
)]}
=
[18×(1-
)]
=18.
故答案为:18.
| C | r n |
| r |
| 2 |
令
| r |
| 2 |
∴an=3n-2Cn2.
| 3n |
| an |
| 3n | ||
|
| 2 |
| n(n-1) |
| 18 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
∴
| lim |
| n→∞ |
| 32 |
| a2 |
| 33 |
| a3 |
| 34 |
| a4 |
| 3n |
| an |
=
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
=
| lim |
| n→∞ |
| 1 |
| n |
=18.
故答案为:18.
点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题、考查由函数解析式求函数值问题.解题时要注意裂项求和公式的合理运用.
练习册系列答案
相关题目