题目内容

15.已知抛物线x2=2py(p>0)与直线2x-y+1=0交于A,B两点,$|AB|=2\sqrt{30}$,点M在抛物线上,MA⊥MB.
(1)求p的值;
(2)求点M的横坐标.

分析 (1)联立直线方程与抛物线方程,化为关于x的一元二次方程,由根与系数的关系得到A,B两点横坐标的和与积,由弦长公式求得p的值;
(2)由(1)求出A,B的坐标,设出M的坐标,利用MA⊥MB得,代入根与系数的关系求得答案.

解答 解:(1)将y=2x+1代入x2=2py,得x2-4px-2p=0,
设A(x1,y1),B(x2,y2),
则x1+x2=4p,x1x2=-2p,
由$|AB|=2\sqrt{30}$及p>0,得p=1.
(2)由(1)得设点$M({x_0},\frac{{{x_0}^2}}{2})$,$A({x_1},\frac{{{x_1}^2}}{2})$,$B({x_2},\frac{{{x_2}^2}}{2})$,
由MA⊥MB得$\overrightarrow{MA}•\overrightarrow{MB}=0$,
即$\overrightarrow{MA}=({x_1}-{x_0},\frac{{{x_1}^2-{x_0}^2}}{2})$,$\overrightarrow{MB}=({x_2}-{x_0},\frac{{{x_2}^2-{x_0}^2}}{2})$,
$\overrightarrow{MA}•\overrightarrow{MB}=({x_1}-{x_0})({x_2}-{x_0})+(\frac{{{x_1}^2-{x_0}^2}}{2})(\frac{{{x_2}^2-{x_0}^2}}{2})=0$,
∴(x1+x0)(x2+x0)+4=0,
∴${x_0}=-2±\sqrt{2}$.

点评 本题主要考查抛物线的几何性质、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网