题目内容
若复数满足(其中为虚数单位), 则的最大值为 .
1
如图,已知正三棱柱ABC-A1B1C1的底面边长为8,侧棱长为6,D为AC中点。
(1)求证:直线AB1∥平面C1DB;
(2)求异面直线AB1与BC1所成角的余弦值。
某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为(0<<1,则出厂价相应提高的比例为0.7,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.
(1)若年销售量增加的比例为0.4,为使本年度的年利润比上年度有所增加,则投入成本增加的比例应在什么范围内?
(2)在(1)的条件下,当为何值时,本年度的年利润最大?最大利润为多少?
已知复数,(,是虚数单位).
(1)若复数在复平面上对应点落在第一象限,求实数的取值范围;
(2)若虚数是实系数一元二次方程的根,求实数值.
函数y=的值域为 .
已知函数,若关于的方程恰有四个互不相等的实数根,则x1x2x3x4的取值范围是__________.
命题“,”的否定是 .
设是定义在的可导函数,且不恒为0,记.若对定义域内的每一个,总有,则称为“阶负函数”;若对定义域内的每一个,总有,则称为“阶不减函数”(为函数的导函数).
(1)若既是“1阶负函数”,又是“1阶不减函数”,求实数的取值范围;
(2)对任给的“阶不减函数”,如果存在常数,使得恒成立,试判断是否为“阶负函数”?并说明理由.
已知为实数,.
(Ⅰ)若,求在 上的最大值和最小值;
(Ⅱ)若在和上都是递增的,求的取值范围.