题目内容

3.位于直角坐标原点的质点P按一下规则移动:①每次移动一个单位②向左移动的概率为$\frac{1}{4}$,向右移动的概率为$\frac{3}{4}$.移动5次后落在点(-1,0)的概率为(  )
A.C${\;}_{5}^{3}$($\frac{1}{4}$)3($\frac{3}{4}$)2B.C${\;}_{5}^{3}$($\frac{1}{4}$)2($\frac{3}{4}$)3C.C${\;}_{4}^{2}$($\frac{1}{4}$)3($\frac{3}{4}$)2D.C${\;}_{4}^{2}$($\frac{1}{4}$)2($\frac{3}{4}$)3

分析 根据题意,分析可得质点P移动五次后位于点(-1,0),其中向左移动3次,向右移动2次,进而借助排列、组合分析左右平移的顺序情况,由相互独立事件的概率公式,计算可得答案.

解答 解:根据题意,质点P移动五次后位于点(-1,0),其中向左移动3次,向右移动2次;
其中向左平移的3次有${C}_{5}^{3}$种情况,剩下的2次向右平移;
则其概率为${C}_{5}^{3}$×(${(\frac{1}{4})}^{3}$×${(\frac{3}{4})}^{2}$,
故选:A.

点评 本题考查相互独立事件的概率的计算,其难点在于分析质点P移动五次后位于点(-1,0)的实际平移的情况,这里要借助排列组合的知识,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网