题目内容

4.已知向量$\overrightarrow{a}$=(2,3,0),$\overrightarrow{b}$=(-3,0,4),且k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$互相垂直,则k=$\frac{31}{19}$.

分析 利用平面向量坐标运算法则先分别求出k$\overrightarrow{a}$+$\overrightarrow{b}$和$\overrightarrow{a}$-$\overrightarrow{b}$,再由k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$互相垂直,能求出k的值.

解答 解:∵向量$\overrightarrow{a}$=(2,3,0),$\overrightarrow{b}$=(-3,0,4),
∴k$\overrightarrow{a}$+$\overrightarrow{b}$=(2k-3,3k,4),$\overrightarrow{a}$-$\overrightarrow{b}$=(5,3,-4),
∵k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$互相垂直,
∴(k$\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=5(2k-3)+3×3k+(-4)×4=0,
解得k=$\frac{31}{19}$.
故答案为:$\frac{31}{19}$.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意平面向量运算法则和向量垂直的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网