题目内容
已知
=(1,sinθ),
=(1,cosθ),(θ∈R)
(1)若
+
=(2,0),求sin2θ+2sinθcosθ得值.
(2)若
-
=(0,
),求sinθ+cosθ得值.
| a |
| b |
(1)若
| a |
| b |
(2)若
| a |
| b |
| 1 |
| 5 |
(1)∵
+
=(2,sinθ+cosθ)=(2,0)∴sinθ+cosθ=0(2分)
∴sin2θ+2sinθcosθ=
=
=
=-
(5分)
(2)∵
-
=(0,sinθ-cosθ)=(0,
)∴sinθ-cosθ=
,(6分)
∴1-2sinθcosθ=
即2sinθcosθ=
,(8分)
∴(sinθ+cosθ)2=1+2sinθcosθ=1+
=
∴sinθ+cosθ=±
(10分)
| a |
| b |
∴sin2θ+2sinθcosθ=
| sin2θ+2sinθcosθ |
| sin2θ+cos2θ |
| tan2θ+2tanθ |
| tan2θ+1 |
| 1-2 |
| 2 |
| 1 |
| 2 |
(2)∵
| a |
| b |
| 1 |
| 5 |
| 1 |
| 5 |
∴1-2sinθcosθ=
| 1 |
| 25 |
| 24 |
| 25 |
∴(sinθ+cosθ)2=1+2sinθcosθ=1+
| 24 |
| 25 |
| 49 |
| 25 |
| 7 |
| 5 |
练习册系列答案
相关题目