题目内容

5.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1.
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)|$\overrightarrow{a}$-2$\overrightarrow{b}$|

分析 (1)根据向量的数量积定义计算;
(2)计算($\overrightarrow{a}-2\overrightarrow{b}$)2再开方即可.

解答 解:(1)$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|cos60°=2×$1×\frac{1}{2}$=1.
(2)∵($\overrightarrow{a}-2\overrightarrow{b}$)2=${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}•\overrightarrow{b}$+4${\overrightarrow{b}}^{2}$=4-4+4=4,
∴|$\overrightarrow{a}$-2$\overrightarrow{b}$|=2.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网