题目内容
已知数列{an}的前n项和为Sn,且满足a2=6,3Sn=(n+1)an+n(n+1).
(1)求a1,a3;
(2)求数列{an}的通项公式;
(3)已知数列{bn}的通项公式是bn=
,cn=bn+1-bn,试判断数列{cn}是否是单调数列,并证明对任意的正整数n,都有1<cn≤
-
.
(1)求a1,a3;
(2)求数列{an}的通项公式;
(3)已知数列{bn}的通项公式是bn=
| an |
| 6 |
| 2 |
考点:数列递推式,数列的函数特性,数列的求和
专题:等差数列与等比数列
分析:(1)分别令n=1,n=3,建立方程即可求a1,a3;
(2)由数列的递推关系,构建方程组,即可求数列{an}的通项公式;
(3)利用单调数列的定义,结合不等式的性质即可得到结论.
(2)由数列的递推关系,构建方程组,即可求数列{an}的通项公式;
(3)利用单调数列的定义,结合不等式的性质即可得到结论.
解答:
解 (1)令n=1得3a1=2a1+2,解得a1=2;令n=3得3(8+a3)=4a2+12,解得a3=12.
(2)由已知3Sn=(n+1)an+n(n+1),①
3Sn+1=(n+2)an+1+(n+1)(n+2),②
②-①得3an+1=(n+2)an+1-(n+1)an+2(n+1),
即(n-1)an+1-(n+1)an+2(n+1)=0,③
所以nan+2-(n+2)an+1+2(n+2)=0,④
④-③得nan+2-(2n+1)an+1+(n+1)an+2=0,
即n(an+2-an+1)-(n+1)(an+1-an)+2=0,⑤
从而(n+1)(an+3-an+2)-(n+2)(an+2-an+1)+2=0,⑥
⑥-⑤得(n+1)(an+3-an+2)-2(n+1)(an+2-an+1)+(n+1)(an+1-an)=0,
即(an+3-an+2)-2(an+2-an+1)+(an+1-an)=0,
即(an+3-an+2)-(an+2-an+1)=(an+2-an+1)-(an+1-an),⑦
所以数列{an+1-an}是等差数列,首项为a2-a1=4,公差为(a3-a2)-(a2-a1)=2,
所以an+1-an=4+2(n-1)=2n+2,即an-an-1=2n,an-1-an-2=2(n-1),…a3-a2=6,a2-a1=4,a1=2,相加得an=2+4+6+…+2(n-1)+2n=n(n+1).
(3)数列{cn}是单调递减数列,
证明如下:因为cn=bn+1-bn=
-
=
,
所以cn+1=
,要证明cn+1<cn,等价于证明
>
?n+1+
>n+2+
;?
-
>1?
>1;
?2n+3>
+
,由
=
<n+2,
=
<n+1,
所以2n+3>
+
,于是cn+1<cn,所以cn≤c1=
-
.
下面证明cn>1?
>1?
?2
>
+
?2(n+1)>2
?n+1>
=
.
(2)由已知3Sn=(n+1)an+n(n+1),①
3Sn+1=(n+2)an+1+(n+1)(n+2),②
②-①得3an+1=(n+2)an+1-(n+1)an+2(n+1),
即(n-1)an+1-(n+1)an+2(n+1)=0,③
所以nan+2-(n+2)an+1+2(n+2)=0,④
④-③得nan+2-(2n+1)an+1+(n+1)an+2=0,
即n(an+2-an+1)-(n+1)(an+1-an)+2=0,⑤
从而(n+1)(an+3-an+2)-(n+2)(an+2-an+1)+2=0,⑥
⑥-⑤得(n+1)(an+3-an+2)-2(n+1)(an+2-an+1)+(n+1)(an+1-an)=0,
即(an+3-an+2)-2(an+2-an+1)+(an+1-an)=0,
即(an+3-an+2)-(an+2-an+1)=(an+2-an+1)-(an+1-an),⑦
所以数列{an+1-an}是等差数列,首项为a2-a1=4,公差为(a3-a2)-(a2-a1)=2,
所以an+1-an=4+2(n-1)=2n+2,即an-an-1=2n,an-1-an-2=2(n-1),…a3-a2=6,a2-a1=4,a1=2,相加得an=2+4+6+…+2(n-1)+2n=n(n+1).
(3)数列{cn}是单调递减数列,
证明如下:因为cn=bn+1-bn=
| (n+1)(n+2) |
| n(n+1) |
2
| ||||
|
所以cn+1=
2
| ||||
|
| ||||
|
| ||||
|
| (n+1)(n+3) |
| n(n+2) |
| (n+1)(n+3) |
| n(n+2) |
| 2n+3 | ||||
|
?2n+3>
| (n+1)(n+3) |
| n(n+2) |
| (n+1)(n+3) |
| (n+2)2-1 |
| n(n+2) |
| (n+1)2-1 |
所以2n+3>
| (n+1)(n+3) |
| n(n+2) |
| 6 |
| 2 |
下面证明cn>1?
2
| ||||
|
2
| ||||
|
| n+1 |
| n+2 |
| n |
| n(n+2) |
| (n+1)2-1 |
| n(n+2) |
点评:本题主要考查数列通项公式和前n项和的计算,考查数列和不等式之间的综合应用,运算量较大,综合性较强,考查学生的计算能力.
练习册系列答案
相关题目
已知等比数列{an}满足an>0,n=1,2,…,a5•a2n-5=22n,(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n+1=( )
| A、n(2n-1) |
| B、n2 |
| C、(n+1)2 |
| D、(n-1)2 |