题目内容
8.函数f(x)=$\sqrt{|x|+|{x+1}|-3}$.(1)求函数f(x)的定义域A;
(2)设B={x|-1<x<2},当实数a,b∈(B∩(∁RA))时,证明:$\frac{{|{a+b}|}}{2}$<|1+$\frac{ab}{4}}$|.
分析 (1)根据负数没有平方根,利用绝对值的代数意义分类讨论确定出定义域A即可;
(2)由A与B,求出A补集与B的交集,确定出a,b的范围,所证不等式等价于2|a+b|<|4+ab|,平方后利用作差法证明即可.
解答 (1)解:由题意得|x|+|x+1|-3≥0,
可得$\left\{{\begin{array}{l}{x<-1}\\{-x-x-1-3≥0}\end{array}}\right.$或$\left\{{\begin{array}{l}{-1≤x≤0}\\{-x+x+1-3≥0}\end{array}}\right.$或$\left\{{\begin{array}{l}{x>0}\\{x+x+1-3≥0}\end{array}}\right.$,
解得:x≤-2或x≥1,
则A=(-∞,-2]∪[1,+∞);
(2)证明:∵A=(-∞,-2]∪[1,+∞),B=(-1,2),
∴B∩(∁RA)=(-1,1),
又$\frac{{|{a+b}|}}{2}$<|1+$\frac{ab}{4}}$|?2|a+b|<|4+ab|,
而4(a+b)2-(4+ab)2=4a2+4b2-a2b2-16=a2(4-b2)+4(b2-4)=(b2-4)(4-a2),
∵a,b∈(-1,1),
∴(b2-4)(4-a2)<0,
∴4(a+b)2<(4+ab)2,
∴$\frac{{|{a+b}|}}{2}$<|1+$\frac{ab}{4}}$|.
点评 此题考查了交、并、补集的混合运算,以及函数的定义域及其求法,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关题目
19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左、右焦点分别为F1、F2,焦距为6,过右焦点F2向其中一条渐近线作垂线F2H,交渐近线于H点,当△F1F2H的周长取最大值时,双曲线的离心率e=( )
| A. | $\sqrt{2}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | 2 |
19.设函数f(x)=cos(2x+$\frac{π}{4}$)+sin(2x+$\frac{π}{4}$),则( )
| A. | 函数f(x)在区间($\frac{π}{2},π$)内单调递增,其图象关于直线x=$\frac{π}{4}$对称 | |
| B. | 函数f(x)在区间($\frac{π}{2}$,π)内单调递增,其图象关于直线x=$\frac{π}{2}$对称 | |
| C. | 函数f(x)在区间($\frac{π}{2}$,π)内单调递减,其图象关于直线x=$\frac{π}{4}$对称 | |
| D. | 函数f(x)在区间($\frac{π}{2},π$)内单调递减,其图象关于直线x=$\frac{π}{2}$对称 |
16.已知双曲线的离心率为$\sqrt{3}$,一个焦点到一条渐近线的距离为2,则该双曲线的方程可以是( )
| A. | x2-$\frac{y^2}{4}$=1 | B. | x2-$\frac{y^2}{2}$=1 | C. | $\frac{y^2}{2}-\frac{x^2}{4}$=1 | D. | $\frac{y^2}{4}-\frac{x^2}{2}$=1 |
3.某工厂共有甲、乙、丙三个车间,甲车间有x名职工,乙车间有300名职工,丙车间有y名职工,现采用分层抽样的方法从该厂抽取容量为45人的样本,甲车间抽取20人,丙车间抽取10人,则该工厂共有的职工人数是( )
| A. | 600人 | B. | 800人 | C. | 900人 | D. | 1000人 |