ÌâÄ¿ÄÚÈÝ
8£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÓÒ¶¥µãΪA£¬É϶¥µãΪB£¬ÒÔ×ø±êÔµãOΪԲÐÄ£¬ÍÖÔ²CµÄ¶ÌÖ᳤Ϊֱ¾¶×÷Ô²O£¬½ØÖ±ÏßABµÄÏÒ³¤Îª$\frac{6\sqrt{7}}{7}$£¨a2-b2£©£®£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚ¹ýÍÖÔ²CµÄÓÒ½¹µãFµÄÖ±Ïßl£¬ÓëÍÖÔ²CÏཻÓÚG¡¢HÁ½µã£¬Ê¹µÃ¡÷AFGÓë¡÷AFHµÄÃæ»ý±ÈΪ1£º2£¿Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©Ö±ÏßABµÄ·½³ÌΪ£º$\frac{x}{a}$+$\frac{y}{b}$=1£¬»¯Îª£ºbx-ay-ab=0£¬¿ÉµÃ$\sqrt{{b}^{2}-£¨\frac{ab}{\sqrt{{a}^{2}+{b}^{2}}}£©^{2}}$=$\frac{6\sqrt{7}}{7}$£¨a2-b2£©£®ÓÖ$\frac{c}{a}$=$\frac{1}{2}$£¬a2=b2+c2£®ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£®
£¨2£©ÈçͼËùʾ£¬¼ÙÉè´æÔÚ¹ýÍÖÔ²CµÄÓÒ½¹µãFµÄÖ±Ïßl£¬ÓëÍÖÔ²CÏཻÓÚG¡¢HÁ½µã£¬Ê¹µÃ¡÷AFGÓë¡÷AFHµÄÃæ»ý±ÈΪ1£º2£®¿ÉµÃ$\frac{|FG|}{|FH|}$=$\frac{1}{2}$£®ÉèÖ±ÏßFGµÄ·½³ÌΪ£ºx=$\frac{1}{2}$+my£®G£¨x1£¬y1£©£¬H£¨x2£¬y2£©£®ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£º£¨16+12m2£©y2+12my-9=0£®ÀûÓøùÓëϵÊýµÄ¹ØÏµ¼°Æä$\frac{{y}_{1}}{-{y}_{2}}$=$\frac{1}{2}$£®¼´¿ÉµÃ³öm£®
½â´ð
½â£º£¨1£©Ö±ÏßABµÄ·½³ÌΪ£º$\frac{x}{a}$+$\frac{y}{b}$=1£¬»¯Îª£ºbx-ay-ab=0£¬
Ôò$\sqrt{{b}^{2}-£¨\frac{ab}{\sqrt{{a}^{2}+{b}^{2}}}£©^{2}}$=$\frac{6\sqrt{7}}{7}$£¨a2-b2£©£®ÓÖ$\frac{c}{a}$=$\frac{1}{2}$£¬a2=b2+c2£®
ÁªÁ¢½âµÃ£ºa=1£¬b=$\frac{\sqrt{3}}{2}$£¬c=$\frac{1}{2}$£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ${x}^{2}+\frac{4{y}^{2}}{3}$=1£®
£¨2£©ÈçͼËùʾ£¬¼ÙÉè´æÔÚ¹ýÍÖÔ²CµÄÓÒ½¹µãFµÄÖ±Ïßl£¬
ÓëÍÖÔ²CÏཻÓÚG¡¢HÁ½µã£¬Ê¹µÃ¡÷AFGÓë¡÷AFHµÄÃæ»ý±ÈΪ1£º2£®
Ôò$\frac{|FG|}{|FH|}$=$\frac{1}{2}$£®
ÉèÖ±ÏßFGµÄ·½³ÌΪ£ºx=$\frac{1}{2}$+my£®G£¨x1£¬y1£©£¬H£¨x2£¬y2£©£®
ÁªÁ¢$\left\{\begin{array}{l}{x=\frac{1}{2}+my}\\{{x}^{2}+\frac{4{y}^{2}}{3}=1}\end{array}\right.$£¬»¯Îª£º£¨16+12m2£©y2+12my-9=0£®
¡ày1+y2=$\frac{-12m}{16+12{m}^{2}}$£¬y1y2=$\frac{-9}{16+12{m}^{2}}$£®
$\frac{{y}_{1}}{-{y}_{2}}$=$\frac{1}{2}$£®
»¯Îª£ºm2=$\frac{4}{5}$£¬½âµÃm=$¡À\frac{2\sqrt{5}}{5}$£®
Òò´Ë´æÔÚ¹ýÍÖÔ²CµÄÓÒ½¹µãFµÄÖ±Ïßl£ºx=$\frac{1}{2}¡À\frac{2\sqrt{5}}{5}$y£¬
ÓëÍÖÔ²CÏཻÓÚG¡¢HÁ½µã£¬Ê¹µÃ¡÷AFGÓë¡÷AFHµÄÃæ»ý±ÈΪ1£º2£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ£¬¿¼²éÁËÊýÐνáºÏ˼Ïë·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| A£® | [2k¦Ð-$\frac{¦Ð}{6}$£¬2k¦Ð+$\frac{5¦Ð}{6}$]£¨k¡ÊZ£© | B£® | [2k¦Ð-$\frac{¦Ð}{3}$£¬2k¦Ð+$\frac{2¦Ð}{3}$]£¨k¡ÊZ£© | ||
| C£® | [k¦Ð-$\frac{¦Ð}{6}$£¬k¦Ð+$\frac{¦Ð}{3}$]£¨k¡ÊZ£© | D£® | [k¦Ð-$\frac{¦Ð}{3}$£¬2k¦Ð+$\frac{¦Ð}{6}$]£¨k¡ÊZ£© |
| A£® | £¨0£¬2£© | B£® | £¨-2£¬3£© | C£® | £¨-2£¬0£© | D£® | £¨2£¬3£© |