题目内容
14.过抛物线y2=2px(p>0)的焦点F作两条相互垂直的射线,分别与抛物线相交于点M,N,过弦MN的中点P作抛物线准线的垂线PQ,垂足为Q,则$\frac{{|{PQ}|}}{{|{MN}|}}$的最大值为( )| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
分析 设|MF|=a,|NF|=b,由抛物线定义,2|PQ|=a+b.再由勾股定理可得|MN|2=a2+b2,进而根据基本不等式,求得|MN|的范围,即可得到答案.
解答 解:设|MF|=a,|NF|=b.
由抛物线定义,结合梯形中位线定理可得2|PQ|=a+b,
由勾股定理得,|MN|2=a2+b2配方得,
|MN|2=(a+b)2-2ab,
又ab≤$(\frac{a+b}{2})^{2}$,
∴(a+b)2-2ab≥(a+b)2-2$(\frac{a+b}{2})^{2}$,
得到|MN|≥$\frac{\sqrt{2}}{2}$(a+b).
∴$\frac{{|{PQ}|}}{{|{MN}|}}$≤$\frac{\frac{1}{2}(a+b)}{\frac{\sqrt{2}}{2}(a+b)}$=$\frac{\sqrt{2}}{2}$,即$\frac{{|{PQ}|}}{{|{MN}|}}$的最大值为$\frac{\sqrt{2}}{2}$.
故选C.
点评 本题主要考查抛物线的应用和解三角形的应用,考查基本不等式,考查了计算能力、分析问题和解决问题的能力.
练习册系列答案
相关题目
5.已知矩形tanA=3tanC,E、F分别是BC、AD的中点,且BC=2AB=2,现沿EF将平面ABEF折起,使平面ABEF⊥平面EFDC,则三棱锥A-FEC的外接球的体积为( )
| A. | $\frac{{\sqrt{3}}}{3}π$ | B. | $\frac{{\sqrt{3}}}{2}π$ | C. | $\sqrt{3}π$ | D. | $2\sqrt{3}π$ |
9.命题“?x0∈R,x02-x0>0”的否定是( )
| A. | ?x∈R,x2-x>0 | B. | $?{x_0}∈R,{x_0}^2-{x_0}≤0$ | ||
| C. | ?x∈R,x2-x≤0 | D. | $?{x_0}∈R,{x_0}^2-{x_0}<0$ |