ÌâÄ¿ÄÚÈÝ
2£®ÈôÏòÁ¿$\overrightarrow a=£¨\sqrt{3}sin¦Øx£¬sin¦Øx£©£¬\overrightarrow b=£¨cos¦Øx£¬sin¦Øx£©$£¬ÆäÖЦأ¾0£¬¼Çº¯Êý$f£¨x£©=\overrightarrow a•\overrightarrow b-\frac{1}{2}$£¬Èôº¯Êýf£¨x£©µÄͼÏóÏàÁÚÁ½Ìõ¶Ô³ÆÖáÖ®¼äµÄ¾àÀëÊÇ$\frac{¦Ð}{2}$£®£¨¢ñ£©Çóf£¨x£©µÄ±í´ïʽ£»
£¨¢ò£©Éè¡÷ABCÈýÄÚ½ÇA¡¢B¡¢CµÄ¶ÔÓ¦±ß·Ö±ðΪa¡¢b¡¢c£¬Èôa+b=3£¬$c=\sqrt{3}$£¬f£¨C£©=1£¬Çó¡÷ABCµÄÃæ»ý£®
·ÖÎö £¨¢ñ£©ÓÉÒÑÖªÀûÓÃÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㻯¼ò¿ÉµÃº¯Êý½âÎöʽf£¨x£©=sin£¨2¦Øx-$\frac{¦Ð}{6}$£©£¬ÓÉÌâÒâ¿ÉÖªÆäÖÜÆÚΪ¦Ð£¬ÀûÓÃÖÜÆÚ¹«Ê½¿ÉÇ󦨣¬¼´¿ÉµÃ½âº¯Êý½âÎöʽ£®
£¨¢ò£©ÓÉf£¨C£©=1£¬µÃ$sin£¨2C-\frac{¦Ð}{6}£©=1$£¬½áºÏ·¶Î§0£¼C£¼¦Ð£¬¿ÉµÃ-$\frac{¦Ð}{6}$£¼2C-$\frac{¦Ð}{6}$£¼$\frac{11¦Ð}{6}$£¬½âµÃC=$\frac{¦Ð}{3}$£¬½áºÏÒÑÖªÓÉÓàÏÒ¶¨ÀíµÃabµÄÖµ£¬ÓÉÃæ»ý¹«Ê½¼´¿É¼ÆËãµÃ½â£®
½â´ð £¨±¾ÌâÂú·ÖΪ12·Ö£©
½â£º£¨¢ñ£©¡ß$\overrightarrow a=£¨\sqrt{3}sin¦Øx£¬sin¦Øx£©£¬\overrightarrow b=£¨cos¦Øx£¬sin¦Øx£©$£¬
¡à$f£¨x£©=\overrightarrow a•\overrightarrow b-\frac{1}{2}=\sqrt{3}sin¦Øxcos¦Øx+{sin^2}¦Øx-\frac{1}{2}=sin£¨2¦Øx-\frac{¦Ð}{6}£©$£¬¡£¨4·Ö£©
ÓÉÌâÒâ¿ÉÖªÆäÖÜÆÚΪ¦Ð£¬
¹Ê¦Ø=1£¬
Ôòf£¨x£©=sin£¨2x-$\frac{¦Ð}{6}$£©£¬¡£¨6·Ö£©
£¨¢ò£©ÓÉf£¨C£©=1£¬µÃ$sin£¨2C-\frac{¦Ð}{6}£©=1$£¬
¡ß0£¼C£¼¦Ð£¬¡à-$\frac{¦Ð}{6}$£¼2C-$\frac{¦Ð}{6}$£¼$\frac{11¦Ð}{6}$£¬
¡à2C-$\frac{¦Ð}{6}$=$\frac{¦Ð}{2}$£¬½âµÃC=$\frac{¦Ð}{3}$£® ¡£¨8·Ö£©
ÓÖ¡ßa+b=3£¬$c=\sqrt{3}$£¬ÓÉÓàÏÒ¶¨ÀíµÃc2=a2+b2-2abcos$\frac{¦Ð}{3}$£¬
¡à£¨a+b£©2-3ab=3£¬¼´ab=2£¬
ÓÉÃæ»ý¹«Ê½µÃÈý½ÇÐÎÃæ»ýΪ$\frac{1}{2}absinC=\frac{{\sqrt{3}}}{2}$£®¡£¨12·Ö£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㣬Èý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Óã¬ÖÜÆÚ¹«Ê½£¬ÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÓàÏÒ¶¨Àí£¬Èý½ÇÐÎÃæ»ý¹«Ê½ÔÚ½âÈý½ÇÐÎÖеÄÓ¦Ó㬿¼²éÁËת»¯Ë¼ÏëºÍÊýÐνáºÏ˼Ï룬ÊôÓÚÖеµÌ⣮
| A£® | 3 | B£® | 2 | C£® | -2 | D£® | -3 |
| ×éÊý | ·Ö×é | ÈÏͬÈËÊý | ÈÏͬÈËÊýÕ¼ ±¾×éÈËÊý±È |
| µÚÒ»×é | [25£¬30£© | 120 | 0.6 |
| µÚ¶þ×é | [30£¬35£© | 195 | p |
| µÚÈý×é | [35£¬40£© | 100 | 0.5 |
| µÚËÄ×é | [40£¬45£© | a | 0.4 |
| µÚÎå×é | [45£¬50£© | 30 | 0.3 |
| µÚÁù×é | [50£¬55£© | 15 | 0.3 |
£¨2£©Èô´Ó[40£¬45£©£¬[45£¬50£©Á½¸öÄêÁä¶ÎÖеġ°ÈÏͬ¡±ÈËȺÖУ¬°´·Ö²ã³éÑùµÄ·½·¨³é9È˲ÎÓë×ù̸»á£¬È»ºó´ÓÕâ9ÈËÖÐÑ¡2Ãû×÷Ϊ×鳤£¬×鳤ÄêÁäÔÚ[40£¬45£©ÄÚµÄÈËÊý¼ÇΪ¦Î£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁÐºÍÆÚÍû£®