题目内容
15.已知函数$f(x)=\frac{1}{3}{x^3}+{a^2}{x^2}+ax+b$,当x=-1时函数f(x)的极值为$-\frac{7}{12}$,则f(1)=$\frac{25}{12}$或$\frac{1}{12}$.分析 求出原函数的导函数,根据当x=-1时函数f(x)的极值为-$\frac{7}{12}$,f′(-1)=0,f(-1)=-$\frac{7}{12}$,求出a,b的值,代入原函数解析式后课求f(1)的值
解答 解:∵$f(x)=\frac{1}{3}{x^3}+{a^2}{x^2}+ax+b$,
∴f′(x)=x2+2a2x+a,
∵当x=-1时函数f(x)的极值为$-\frac{7}{12}$,
∴f′(-1)=1-2a2+a=0,f(-1)=-$\frac{1}{3}$+a2-a+b=-$\frac{7}{12}$
解得$\left\{\begin{array}{l}{a=1}\\{b=-\frac{1}{4}}\end{array}\right.$或$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=0}\end{array}\right.$,
∴f(x)=$\frac{1}{3}$x3+x2+x-$\frac{1}{4}$,或f(x)=$\frac{1}{3}$x3+$\frac{1}{4}$x2-$\frac{1}{2}$x,
∴f(1)=$\frac{1}{3}$+1+1-$\frac{1}{4}$=$\frac{25}{12}$,或f(1)=$\frac{1}{3}$+$\frac{1}{4}$-$\frac{1}{2}$=$\frac{1}{12}$,
故答案为:$\frac{25}{12}$或$\frac{1}{12}$.
点评 本题主要考查函数在某点取得极值的条件,需要注意的是极值点处的导数等于0,但导数为0的点不一定是极值点,属基础题.
练习册系列答案
相关题目
20.已知函数f(x)=$\sqrt{2}sinωxcosωx+\sqrt{2}{cos^2}ωx-\frac{{\sqrt{2}}}{2}({ω>0})$,若函数f(x)在$({\frac{π}{2},π})$上单调递减,则实数ω的取值范围是( )
| A. | $[{\frac{1}{4},\frac{5}{8}}]$ | B. | $[{\frac{1}{2},\frac{5}{4}}]$ | C. | $({0,\frac{1}{2}}]$ | D. | $({0,\frac{1}{4}}]$ |
7.为迎接春节,某工厂大批生产小孩玩具--拼图,工厂为了规定工时定额,需要确定加工拼图所花费的时间,为此进行了5次试验,测得的数据如下:
(1)画出散点图,并判断y与x是否具有相关关系;
(2)求回归方程;
(3)根据求出的回归方程,预测加工2 00个拼图需用多少分钟.
| 拼图数x/个 | 10 | 20 | 30 | 40 | 50 |
| 加工时间y/分钟 | 62 | 68 | 75 | 81 | 89 |
(2)求回归方程;
(3)根据求出的回归方程,预测加工2 00个拼图需用多少分钟.