题目内容

1.如图,在底面是直角梯形的四棱锥S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=$\frac{1}{2}$.
(1)求四棱锥S-ABCD的体积;
(2)求证:BC⊥面SAB;
(3)求SC与底面ABCD所成角的正切值.

分析 (1),由题设条四棱锥S-ABCD的体积:V=$\frac{1}{3}$Sh=$\frac{1}{3}$×$\frac{1}{2}$×(AD+BC)×AB×SA,即可求得四棱锥S-ABCD的体积;
(2),由SA⊥面ABCD,知SA⊥BC,由AB⊥BC,BC⊥面SAB,由此能够证明面SAB⊥面SBC;
  (3),连接AC,知∠SCA 就是SC与底面ABCD所成的角,由此能求出 SC与底面ABCD所成角的正切值.

解答 解:(1)∵底面是直角梯形的四棱锥S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=$\frac{1}{2}$.
∴四棱锥S-ABCD的体积:V=$\frac{1}{3}$Sh=$\frac{1}{3}$×$\frac{1}{2}$×(AD+BC)×AB×SA=$\frac{1}{6}$×($\frac{1}{2}$+1)×1×1=$\frac{1}{4}$.
(2)证明:∵SA⊥面ABCD,BC?面ABCD,
∴SA⊥BC,
∵AB⊥BC,SA∩AB=A,
∴BC⊥面SAB.
∵BC?面SBC,
∴面SAB⊥面SBC.
(3)连接AC,
∵SA⊥面ABCD,
∴∠SCA 就是SC与底面ABCD所成的角.
在三角形SCA中,
∵SA=1,AC=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,
∴tan∠SCA=$\frac{SA}{AC}$=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$

点评 本题考查棱锥的体积公式,考查直线与平面所成角的求法,平面与平面垂直的判定定理的应用,考查空间想象能力以及计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网