题目内容

函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m,n>0,则
1
m
+
2
n
的最小值为(  )
A、6B、8C、4D、10
考点:基本不等式
专题:不等式的解法及应用
分析:利用对数函数的性质可得:函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A(-2,-1),把点A代入直线mx+ny+1=0,2m+n=1.再利用“乘1法”和基本不等式的性质即可得出.
解答: 解:函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A(-2,-1),
把点A代入直线mx+ny+1=0,可得-2m-n+1=0,化为2m+n=1.
∵m,n>0,
1
m
+
2
n
=(2m+n)(
1
m
+
2
n
)
=4+
n
m
+
4m
n
≥4+2
n
m
4m
n
=8,当且仅当n=2m=
1
2
时取等号.
1
m
+
2
n
的最小值为8.
故选:B.
点评:本题考查了对数函数的性质、“乘1法”和基本不等式的性质,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网