题目内容

18.已知函数f(x)=ax2-2ax+a+$\frac{1}{3}$(a>0),g(x)=bx3-2bx2+bx-$\frac{4}{27}$(b>1),则y=g[f(x)]的零点个数为(  )
A.3B.4C.5D.6

分析 求导,确定g(x)在(0,$\frac{1}{3}$),($\frac{1}{3}$,1),(1,+∞)上分别有零点,f(x)=ax2-2ax+a+$\frac{1}{3}$=a(x-1)2+$\frac{1}{3}$≥$\frac{1}{3}$,可得f(x)在(0,$\frac{1}{3}$)上无根,在($\frac{1}{3}$,1),(1,+∞)上分别有两个根,即可得出y=g[f(x)]的零点个数.

解答 解:∵g(x)=bx3-2bx2+bx-$\frac{4}{27}$,∴g′(x)=b(3x-1)(x-1)
∴g(x)的单调增区间是(0,$\frac{1}{3}$),(1,+∞),单调减区间是($\frac{1}{3}$,1),
∵g(0)g($\frac{1}{3}$)<0,g($\frac{1}{3}$)g(1)<0,
∴g(x)在(0,$\frac{1}{3}$),($\frac{1}{3}$,1),(1,+∞)上分别有零点,
∵f(x)=ax2-2ax+a+$\frac{1}{3}$=a(x-1)2+$\frac{1}{3}$≥$\frac{1}{3}$,
∴f(x)在(0,$\frac{1}{3}$)上无根,在($\frac{1}{3}$,1),(1,+∞)上分别有两个根,
∴y=g[f(x)]的零点个数为4,
故选:B.

点评 本题考查函数的零点,考查导数知识的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网