题目内容
.已知点
为椭圆
的左右焦点,过
的直线
交该椭圆于
两点,
的内切圆的周长为
,则
的值是( )
| A. | B. | C. | D. |
D
分析:根据椭圆方程求得a和c,及左右焦点的坐标,进而根据三角形内切圆面积求得内切圆半径,进而根据△ABF2的面积=△AF1F2的面积+△BF1F2的面积求得△ABF2的面积=3|y2-y1|进而根据内切圆半径和三角形周长求得其面积,建立等式求得|y2-y1|的值.
解:椭圆:
左、右焦点F1(-3,0)、F2( 3,0),
△ABF2的内切圆面积为π,则内切圆的半径为r=
而s△ABF2=S△AF1F2+S△BF1F2=
又S△ABF2=
所以 3|y2-y1|=5,
|y2-y1|=
故选D.
练习册系列答案
相关题目